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Monochromatic connected subgraphs
Connected subgraphs of specific types

Gallai colourings
Independence number

Monochromatic connected subgraphs

Folkloric Observation (Erdős and Rado)

A graph is either connected, or its complement is connected.

Equivalently, in any 2-colouring of the edges of a complete graph,
there exists a monochromatic connected spanning subgraph (or, a
monochromatic spanning tree).

What happens when we use r ≥ 2 colours? Let m(n, r) be the
maximum integer m such that, whenever we have an r -colouring of
Kn, there exists a monochromatic connected subgraph on at least
m vertices. Thus, m(n, 2) = n.
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A graph is either connected, or its complement is connected.
Equivalently, in any 2-colouring of the edges of a complete graph,
there exists a monochromatic connected spanning subgraph (or, a
monochromatic spanning tree).

What happens when we use r ≥ 2 colours?

Let m(n, r) be the
maximum integer m such that, whenever we have an r -colouring of
Kn, there exists a monochromatic connected subgraph on at least
m vertices. Thus, m(n, 2) = n.

Henry Liu Connected subgraphs in edge-coloured graphs



Monochromatic connected subgraphs
Connected subgraphs of specific types

Gallai colourings
Independence number

Monochromatic connected subgraphs

Folkloric Observation (Erdős and Rado)
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Upper bound:

Affine plane AG (q) over Fq, where q is a prime power. e.g. AG (2):
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I Parallel lines classes are L∞ = {x = c : c ∈ Fq}, and
Lm = {y = mx + c : c ∈ Fq} for m ∈ Fq.

I There are q2 points, and each line contains q points.

I Implies that, if r − 1 is a prime power, then there is an
r -colouring of K(r−1)2 such that the largest monochromatic
connected subgraph has r − 1 vertices.
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If r − 1 is a prime power, take a blow-up of AG (r − 1) to Kn.
e.g. r = 3:
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vertices, i.e. m(n, r) < n
r−1 + r .
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Lower bound:

Theorem 1 (Gyárfás 1977; Füredi 1981)

For r ≥ 2 and any r-colouring of Kn, there is a monochromatic
connected subgraph on at least n

r−1 vertices.

Hence if r − 1 is a prime power, then m(n, r) ≈ n
r−1 (if n is large).

Theorem 1 follows from:

Lemma 2 (Mubayi 2002; L., Morris, Prince 2004)

For r ≥ 2 and any r-colouring of Km,n, there is a monochromatic
double star on at least m+n

r vertices.

A double star is a graph obtained by taking two vertex-disjoint
stars and connecting their centres by an edge. Gyárfás had proved
Lemma 2 with “tree” in place of “double star”.
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Proof of Theorem 1 (assuming Lemma 2).

Take an r -colouring of Kn.

Let U = vertex set of a monochromatic
component. |U| < n⇒ complete bipartite graph with classes U
and V (Kn) \ U is (r − 1)-coloured. Lemma 2 ⇒ there is a
monochromatic tree on at least n

r−1 vertices. �

Proof of Lemma 2.
Take an r -colouring of Km,n.

Let H = bipartite subgraph with
most frequent colour. For xy ∈ E (H), let Z (xy) = d(x) + d(y).

EZ =
1

e(H)

∑
xy∈E(H)

(d(x) + d(y)) =
1

e(H)

∑
v∈V (H)

d(v)2

C-S
≥ 1

e(H)

(
1

m
+

1

n

)
e(H)2 ≥ m + n

r
.

�
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Connected subgraphs of specific types

To extend Erdős and Rado’s observation, we can ask for a
monochromatic tree of a specific type in r -coloured complete
graphs.

Theorem 3
In every 2-colouring of Kn, there is a monochromatic spanning ...

(a) tree of height at most 2 (Bialostocki, Dierker, Voxman 1992);

(b) subdivided star, with centre with degree at most
⌈
n−1
2

⌉
(Bialostocki, Dierker, Voxman 1992);

(c) broom (i.e. a path with a star at one end) (Burr 1992).
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To extend Erdős and Rado’s observation, we can ask for a
monochromatic tree of a specific type in r -coloured complete
graphs.

Theorem 3
In every 2-colouring of Kn, there is a monochromatic spanning ...

(a) tree of height at most 2 (Bialostocki, Dierker, Voxman 1992);

(b) subdivided star, with centre with degree at most
⌈
n−1
2

⌉
(Bialostocki, Dierker, Voxman 1992);

(c) broom (i.e. a path with a star at one end) (Burr 1992).

Henry Liu Connected subgraphs in edge-coloured graphs



Monochromatic connected subgraphs
Connected subgraphs of specific types

Gallai colourings
Independence number

Inspired by Lemma 2 and the affine plane construction, Gyárfás
and Sárközy asked:

Problem 4 (Gyárfás, Sárközy 2008)

For r ≥ 3 and any r-colouring of Kn, is it true that there is a
monochromatic double star on at least n

r−1 vertices?

They proved:

Theorem 5 (Gyárfás, Sárközy 2008)

For r ≥ 2 and any r-colouring of Kn, there is a monochromatic
double star on at least (r+1)n+r−1

r2
vertices.

For r = 2, we have a monochromatic double star on at least 3n+1
4

vertices in any 2-colouring of Kn. By considering Paley graphs or
random graphs, the value 3n

4 + O(1) is tight. Thus, r ≥ 3 in
Problem 4 is important.
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and Sárközy asked:
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Monochromatic cycles?

Theorem 6 (Faudree, Lesniak, Schiermeyer 2009)

For any 2-colouring of Kn (n ≥ 6), there exists a monochromatic
cycle with length at least

⌈
2n
3

⌉
.

Clearly best possible, by taking the 2-colouring of Kn where one
colour induces a clique on

⌈
2n
3

⌉
vertices.

Let f (n, r) be the maximum integer ` such that, every r -colouring
of Kn contains a monochromatic cycle of length at least `. The
affine plane construction gives f (n, r) < n

r−1 + r if r − 1 is a prime
power. Inspired by this, they also conjectured:

Conjecture 7 (Faudree, Lesniak, Schiermeyer 2009)

For r ≥ 3 and n sufficiently large, we have f (n, r) ≥ n
r−1 .

Fujita, Lesniak, Tóth (2015) showed that Conjecture 7 holds when
n is linear in r , with r sufficiently large.
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Recall: A graph H is k-connected if |V (H)| > k , and for all
C ⊂ V (H) with |C | < k , the graph H − C is connected.

Let m(n, r , k) be the maximum integer m such that, for any
r -colouring of Kn, there exists a monochromatic k-connected
subgraph on at least m vertices. Thus, m(n, r , 1) = m(n, r).
m(n, 2, k) ≤ n − 2k + 2 for n > 4(k − 1), since:
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Conjecture 8 (Bollobás, Gyárfás 2003)

For n > 4(k − 1), we have m(n, 2, k) = n − 2k + 2.

True for:

I k = 1 (Erdős and Rado observation);

I k = 2 (Bollobás, Gyárfás 2003);

I k = 3 (L., Morris, Prince 2004);

I n ≥ 13k − 15 (L., Morris, Prince 2004);

I n > 6.5(k − 1) (Fujita, Magnant 2011);

I Conjecture holds ( Luczak 2016).
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I k = 3 (L., Morris, Prince 2004);

I n ≥ 13k − 15 (L., Morris, Prince 2004);

I n > 6.5(k − 1) (Fujita, Magnant 2011);

I Conjecture holds ( Luczak 2016).

Henry Liu Connected subgraphs in edge-coloured graphs



Monochromatic connected subgraphs
Connected subgraphs of specific types

Gallai colourings
Independence number

Conjecture 8 (Bollobás, Gyárfás 2003)
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For r ≥ 3, Liu, Morris, Prince gave a construction which shows
m(n, r , k) < n−k+1

r−1 + r if r − 1 is a prime power. They conjectured:

Conjecture 9 (L., Morris, Prince 2004)

For r ≥ 3 and n > 2r(k − 1), we have m(n, r , k) ≥ n−k+1
r−1 .

Theorem 10 (L., Morris, Prince 2004)

(a) For r ≥ 3, we have m(n, r , k) ≥ n
r−1 − 11k(k − 1)r . Hence, if

k, r are fixed and r − 1 is a prime power, then
m(n, r , k) = n

r−1 + O(1).

(b) For n ≥ 480k, we have m(n, 3, k) ≥ n−k+1
2 .
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Gallai colourings

An edge-colouring of a graph G is a Gallai colouring if there is no
rainbow triangle.

In particular, every 2-colouring of G is a Gallai
colouring.

Theorem 11 (Gallai 1967)

Any Gallai colouring of a complete graph can be obtained by
substituting complete graphs with Gallai colourings for the vertices
of a 2-coloured complete graph on at least two vertices.

Theorem 11 is a “decomposition theorem”. It is widely used to
prove results about Gallai colourings.
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Many results for 2-colourings extend to Gallai colourings:

Theorem 12
In every Gallai colouring of Kn, there is a monochromatic ...

(a) spanning tree of height at most 2 (Gyárfás, Simonyi 2004);

(b) spanning broom (Gyárfás, Simonyi 2004);

(c) double star with at least 3n+1
4 vertices, which is asymptotically

best possible (Gyárfás, Sárközy, Sebö, Selkow 2009).

Example where such an extension does not hold is when we want
to find a monochromatic star. For any 2-colouring of Kn, there is a
monochromatic star on at least about n

2 (sharp). But:

Theorem 13 (Gyárfás, Simonyi 2004)

For every Gallai colouring of Kn, there is a monochromatic star
with at least 2n

5 vertices. This bound is sharp.
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Theorem 13 (Gyárfás, Simonyi 2004)

For every Gallai colouring of Kn, there is a monochromatic star
with at least 2n

5 vertices. This bound is sharp.

Henry Liu Connected subgraphs in edge-coloured graphs



Monochromatic connected subgraphs
Connected subgraphs of specific types

Gallai colourings
Independence number

Many results for 2-colourings extend to Gallai colourings:

Theorem 12
In every Gallai colouring of Kn, there is a monochromatic ...

(a) spanning tree of height at most 2 (Gyárfás, Simonyi 2004);
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Also:

Theorem 14 (Fujita, Magnant 2013)

Let r ≥ 3 and k ≥ 2. If n ≥ (r + 11)(k − 1) + 7k log k. Then in
any Gallai colouring of Kn with r colours, there is a monochromatic
k-connected subgraph on at least n − r(k − 1) vertices.

Problem 15
Improve the bound n ≥ (r + 11)(k − 1) + 7k log k in Theorem 14.
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Independence number

Now we consider: What if we colour the edges of a graph G ,
where the independence number α(G ) is fixed?

Theorem 16 (Gyárfás, Sárközy 2010)

For every 2-colouring of a graph G with n vertices and α(G ) = α,
there exists a monochromatic connected subgraph on at least

⌈
n
α

⌉
vertices. This result is sharp.

They remarked that this can be extended to r -colourings, with
α(r − 1) in the role of α.

Theorem 17 (Gyárfás, Sárközy 2010)

For every Gallai colouring of a graph G with n vertices and
α(G ) = α, there exists a monochromatic connected subgraph on
at least n

α2+α−1 vertices. This is close to being tight.
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What about finding k-connected subgraphs?

Theorem 18 (Fujita, L., Sarkar 2016)

Let G be a graph with n vertices and α(G ) = α. If n > α2k, then
G contains a k-connected subgraph on at least

⌈
n
α

⌉
vertices.⌈

n
α

⌉
clearly tight: take G to be the graph on n vertices with α

disjoint cliques, each with
⌊
n
α

⌋
or
⌈
n
α

⌉
vertices.

Problem 19
Improve the bound n > α2k.

We remark that in Problem 19, the best that we can hope for is to
improve the bound to approximately n ≥ 9

4α(k − 1), for α ≥ 3.
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Theorem 20 (Fujita, L., Sarkar 2016)

Let G be a graph with n vertices and α(G ) = 2. If n ≥ 4(k − 1),
then G contains a k-connected subgraph on at least

⌈
n
2

⌉
vertices.

Theorem 21 (Fujita, L., Sarkar 2016)

Let G be a graph with n vertices and α(G ) = 3. If n ≥ 27
4 (k − 1),

then G contains a k-connected subgraph on at least
⌈
n
3

⌉
vertices.

Problem 22
What happens for the edge-coloured versions of these results?
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Thank you!
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